
A success story:
RFA – Request for Announcement

Jan Gundtofte-Bruun
jan@g-b.dk
2639 7565

WHAT DID I DO?

The RFA project was an intranet site presenting hard-
ware spec sheets for many thousands of products, each
spec sheet existing in a number of revisions. There was
some highlighting of changes and additions between 
revisions.

My task was to implement highlighting for deletions 
as well, and also to implement “view modes” so that 
in addition to showing the spec sheets with highlight-
ing, it should be possible to turn off highlighting, or 
show only the changed passages.

I ended up rewriting a lot of the XML parsing and all 
of the presentation code. Also, I implemented XML-
aware revision comparison which was no mean feat.

WHY WAS IT NECESSARY?

Basically, it turned out that the existing highlighting 
was marked up by the editors manually, and quite 
poorly. Not all edits were marked up, and removed 
passages were simply deleted without any mark-up at 
all. In order to identify those passages, some form of 
comparison of sequent files was needed.

Also, the file format was not really XML but a misun-
derstood approximation. To make matters worse, the 
in-browser presentation was extremely slow, letting 
users stare at a blank browser page for a long time (up 
to two minutes for large files), while the page was be-
ing rendered by parsing the file line-by-line and con-
structing appropriate HTML along the way. This really
needed to be addressed.

HOW DID I DO IT?

I decided to effectively ignore the existing but incom-
plete change markup and instead perform comparis-
ons between sequent revisions. This would yield the 
data necessary to exhaustively highlight the actual ad-
ditions and changes as well as the desired deletions.

Furthermore, the files didn't start out as XML, they 
were pulled via FTP from a mainframe in an arcane 
file format and were converted to a kind of pseudo-
XML. I set forth to improve the converter so it would 
generate clean, actual XML. This was no easy task be-
cause there were literally no specifications for the leg-
acy file format, and the sole maintainer of the existing 
parser had died. An attempt to glean empirical rules 
from the source files and code proved futile, so I 
ended up black-boxing the converter and pipelining a 
new module to translate the pseudo-XML output into 
proper XML.

The hardest part was to write the code to identify se-
quent files and annotate them with revision marks. It's
too long to explain here, but my algorithm, the mark-
up, and much of my thought process are described in 
this post at StackOverflow.

Finally, I created XSLT and CSS templates so the sys-
tem could present the XML files as pretty formatted 
HTML in no time at all.

Now, the various view modes are implemented with a 
small set of short CSS templates going through the 
same XSL transformation. Easy!

The result: With fewer overall lines of code, the current
version offers proper and XML-aware diff, faster per-
formance, and multiple view modes which can be ex-
tended very easily.

WHAT'S SO COOL ABOUT THAT?

This was my first foray into pure Java, and I dare say I 
not only achieved the set goals but surpassed them, 
and handed back a project in considerably better shape
than it had been given to me.

The points I feel most proud about are:

• Making sense of 26kloc of utterly undocu-
mented code.

• Implementing a revision comparison function 
that is aware of XML structure and stores its 
findings as attributes to the relevant elements 
in the newer XML document.

• Replacing a slow, complicated HTML render-
ing system with an XSLT solution has made it 
more responsive, much simpler, and easily ex-
tensible. A win for the users, and for the main-
tainer.

• Improving the data format into proper XML. 
Data needs to be stored in (open) standard 
formats, period.

http://stackoverflow.com/questions/6469271/how-to-diff-xml-on-element-level-not-attributes
http://stackoverflow.com/questions/6469271/how-to-diff-xml-on-element-level-not-attributes

